Calculation of pessimistic, optimistic and intermediate strategies in the analysis of a Stackelberg competition under conditions of uncertainty

Document Type : Original Paper

Authors

1 Department Mathematical ,Faculty of Mathematical Sciences and Statistics, Birjand University, Iran

2 Department of Industrial Engineering, Faculty of Computer and Industrial Engineering, Birjand University of Technology, Birjand, Iran

Abstract

In this paper ‎a bi-level game problem with L-R fuzzy coefficients is studied‎. ‎Using the concept of alpha-cut‎, ‎this problem is converted to a bi-level problem with nonfuzzy coefficients‎. ‎Three kinds of optimistic‎, ‎pessimistic and intermediate ‎solution‎ are introduced for the problem‎, ‎by considering the status of decision makers‎, ‎and in each case‎, ‎the bi-level problem is converted to a single-level problem using the Karush–Kuhn–Tucker optimality conditions‎. ‎Finally‎, ‎an interactive algorithm is proposed that obtains the appropriate solution for the decision maker‎. ‎At the end of the paper‎, ‎an economic example and a case study for the production of polyethylene bags are presented and solved by the proposed algorithm.

Keywords

Main Subjects


[١ [اسماعیلی، سمانه، حسن پور، حسن، بیگدلی، حمید، ١٣٩٩ .برنامه ریزی الفبایی برای حل بازی امنیتی با عایدی های فازی و محاسبه ی راهبرد فریب
بهینه. مجله علمی پژوهشی آینده پژوهشی دفاعی، (١۶(۵ ،صص. ١٠٨ -٨٩.
[٢ [بیگدلی، حمید، حسن پور، حسن، طیبی، جواد، ١٣٩۵ .جواب های خوشبینانه و بدبینانه بازی های ماتریسی تک هدفی و چندهدفی با عایدی های فازی
و تحلیلی برخی موارد نظامی. مجله علمی پژوهشی علوم و فناوری های پدافند نوین، (٨(٢ ،صص. ١۴۵ -١٣٣.
[3] Abedian, M., Amindoust, A., Maddahi, R., and Jouzdani, j., 2022. A Nash equilibrium based decision-making method for performance evaluation: a case study. Journal of Ambient Intelligence and Humanized Computing, 13, pp.5563–5579. doi:10.1007/s12652-021-03188-8
[4] Aghababaei, B., Pishvaee, M.S. and Barzinpour, F., 2022. A fuzzy bi-level programming approach to scarce drugs supply and ration planning problem under risk. Fuzzy Sets and Systems, 434, pp.48–72. doi:10.1016/j.fss.2021.02.021
[5] Ali, M.Y., Sultana , A. and Khan, A., 2016. Comparison of Fuzzy Multiplication Operation on Triangular Fuzzy Number. IOSR Journal of Mathematics, 12(4), pp. 35-41. doi:10.9790/5728-1204013541
[6] Bigdeli, H., Hassanpour, H., and Tayyebi, J., 2019. Multiobjective security game with fuzzy payoffs. Iranian Journal of Fuzzy Systems, 16(1), pp.89-101. doi:10.22111/IJFS.2019.4486
[7] Chakeri, A., Sheikholeslam, F., 2013. Fuzzy Nash Equilibriums in Crisp and Fuzzy Games, Springer Verlag, Berlin, 21(1), pp.171-176. doi:10.1109/TFUZZ.2012.2203308
[8] Change, F., Zhou, G. and et al., 2020. A Stackelberg game-theory approach for maintenance grouping of compelex multi-component system under smart product-service paradigm, Procedia Manufacturing , 49, pp.173-179. doi:10.1016/j.promfg.2020.07.015
[9] Dahiya, A., and Gupta, B. B., 2021. A reputation score policy and Bayesian game theory based incentivized mechanism for DDoS attacks mitigation and cyber defense. Future Generation Computer Systems, 117, pp.193-204. doi:10.1016/j.future.2020.11.027
[10] Fudenberg, D., Tirole, J., 1991. Game Theory. The MIT Pres.
[11] Haywood,O. G., 1989. Military decision and game theory. Journal of the Operations Research Society of America, 4(2), pp.365-385. doi: 10.1287/opre.2.4.365
[12] Ilies, R., Morgeson, F.P. and Nahrgang, J. D., 2005. Authentic leadership and eudemonic well-being: Understanding leaderfollower outcomes. Leadership Quarterly, 16 pp. 373-394. doi:10.1016/j.leaqua.2005.03.002
[13] Isaacs, R., 1952. Differential games I, II, III, IV, RAND Corporation Research Memorandum, RM-1391, 1399, 1411, 1468.
[14] Li, Z., Marelli, D., Fu, M., Cai, Q. and Meng, W., 2021. Linear quadratic Gaussian Stackelberg game under asymmetric information patterns. Automatica, 125, 109406. doi:10.1016/j.automatica.2020.109406
[15] Lu, Q., Guo , Q., and Zeng , W., 2023. Optimal dispatch of community integrated energy system based on Stackelberg game and integrated demand response under carbon trading mechanism. Applied Thermal Engineering, 219, 119508. doi:10.1016/j.applthermaleng.2022.119508
[16] Lucchetti, R., Moretti S., Patrone F., Radrizzani P., 2010. The Shapley and Banzhaf values in microarray games Comput. Oper, Res, 37(8), pp.1406-1412. doi:10.1016/j.cor.2009.02.020
[17] Mazalov, V., 2014. Mathematical game theory and applications. John Wiley Son
[18] Meng , Y., Wang , Y., Sun , S. and et al., 2023. Multi-objective optimal dispatching of demand response-enabled microgrid considering uncertainty of renewable energy generations based on two-level iterative strategy. Energy Reports , 9, pp.1842–1858. doi:10.1016/j.egyr.2022.12.149
[19] Neumann, J. V., Morgenstern,O., 1944. Theory of Games and Economic Behavior. Wiley, New York [20] Nie, P. Y., and Zhang, P. A., 2008. A note on Stackelberg games. In 2008 Chinese Control and Decision Conference pp. 1201-1203.doi:10.1109/CCDC.2008.4597505
[21] Lo Prete, C. L. and Hobbs, B. F., 2016. A cooperative game theoretic analysis of incentives for micro grids in regulated electricity markets. Applied Energy, pp.524–541. doi: 10.1016/j.apenergy.2016.01.099
[22] Safari, G., Hafezalkotob, A. and Khalilzadeh, M. A., 2018. Nash bargaining model for flow shop scheduling problem under uncertainty: a case study from tire manufacturing in Iran. Int J Adv Manuf Technol, 96, pp.531–546. doi:10.1007/s00170-017-1461-0
[23] Sakawa, M., 2013. Fuzzy sets and interactive multiobjective optimization. Springer science business media,
[24] Saleheen, F., Won, C.H., 2019, Statistical Stackelberg game control: Open-loop minimal cost variance case Automatica, 101, pp.338–344.
[25] Tasnim, S., Sarimuthu, C. R., Lan, B. L., and Yang, X., 2021. Two-person cooperative uncertain differential game with transferable payoffs. Fuzzy Optim Decis Making, 20, pp.567–594. doi:10.1007/s10700-021-09355-y
[26] Thang, N. K., 2013. NP-hardness of pure Nash equilibrium in Scheduling and Network Design Games. Theoretical Computer Science, 482, pp.86-95. doi:10.1016/j.tcs.2012.10.051
[27] Tesoriere, A., 2017. Stackelberg equilibrium with many leaders and followers. The case of zero fixed costs, Research in Economics, 71(1), pp.102-117. doi:10.1016/j.rie.2016.11.004
[28] Vector, C. R., Chandra, S., 2005. Fuzzy Mathematical programming and Fuzzy matrix Games. International Mathematical Forum, 3(36), pp.1777-1780. doi:10.1007/3-540-32371-6
[29] Stackelberg, H. V., 1952. The Theory of the Market Economy. Oxford University Press, Oxford, England.
[30] Wang, X., Teo , K, L., 2021. Generalized Nash equilibrium problem over a fuzzy strategy set. Fuzzy Sets and Systems, 434, pp172-184. doi:10.1016/j.fss.2021.06.006
[31] Yaacoub, E., Dawy, Z., 2011. Achieving the Nash bargaining solution in OFDMA uplink using distributed scheduling with limited feedback. International Journal of Electronics and Communications, 65(4), pp.320–330. doi:10.1016/j.aeue.2010.03.007
[32] Zaitseva, I., Malafeyev, O., Poddubnaya, N. and et al., 2023. Game-Theoretic Model of Transport Points Territorial Cooperation. Transportation Research Procedia, 68(3), pp.4–10. doi:10.1016/j.trpro.2023.01.002