[1] Barale, M.S. and Shirke, D.T., 2023. A control chart based on data depth for monitoring the variability in a multivariate process. Communications in Statistics-Simulation and Computation, pp.1-15. http://dx.doi.org/10.1080/03610918.2023.2185932
[2] Bell, R.C., Jones-Farmer, L.A. and Billor, N., 2014. A distribution-free multivariate phase I location control chart for subgrouped data from elliptical distributions. Technometrics, 56(4), pp.528-538. http://dx.doi.org/10.1080/00401706.2013.879264
[3] Boone, J.M. and Chakraborti, S., 2012. Two simple Shewhart‐type multivariate nonparametric control charts. Applied Stochastic Models in Business and Industry, 28(2), pp.130-140.
https://doi.org/10.1002/asmb.900
[4] Boone, J.M., 2010. Contributions to multivariate control charting: studies of the z chart and four nonparametric charts. The University of Alabama.
[5] Capizzi, G. and Masarotto, G. (2024). Distribution-Free Multivariate Phase I Shewhart Control Charts: Analysis, Comparisons and Recommendations. In Advanced Statistical Methods in Process Monitoring, Finance, and Environmental Science: Essays in Honour of Wolfgang Schmid (pp. 59-81). Cham: Springer Nature Switzerland.
[6] Chakraborti, S., Van der Laan, P. and Bakir, S.T., 2001. Nonparametric control charts:
an overview and some results. Journal of quality technology, 33(3), pp.304-315.
https://doi.org/10.1080/00224065.2001.11980081
[7] Chakraborti, S. and Graham, M.A., 2007. Nonparametric control charts. Encyclopedia of statistics in quality and reliability, 1, pp.415-429. https://doi.org/10.1002/9781118445112.stat02699
[8] Chakraborti, S. and Graham, M.A., 2019. Nonparametric (distribution-free) control
charts: An updated overview and some results. Quality Engineering, 31(4), pp.523-544.
https://doi.org/10.1080/08982112.2018.1549330
[9] Dai, Y., Zhou, C. and Wang, Z., 2004. Multivariate CUSUM Control Charts Based on Data Depth For Preliminary Analysis. The Natural Sciences Foundation of Tianjin, 33603111.
[10] Dehghan, S. and Faridrohani, M.R., 2019. Affine invariant depth-based tests for the multivariate one-sample location problem. Test, 28(3), pp.671-693. http://dx.doi.org/10.1007/s11749-018-0593-3
[11] Donoho, D.L. and Gasko, M., 1992. Breakdown properties of location estimates based
on halfspace depth and projected outlyingness. The Annals of Statistics, pp.1803-1827.
http://dx.doi.org/10.1214/aos/1176348890
[12] Hössjer, O. and Croux, C., 1995. Generalizing univariate signed rank statistics for testing and estimating a multivariate location parameter. Journal of Nonparametric Statistics, 4(3), pp.293-308. http://dx.doi.org/10.1080/10485259508832620
[13] Hotelling, H., 1947. Multivariate quality control, techniques of statistical analysis. Eisenhart C, Hastay HW, Wallis WA, editors.
[14] Koshevoy, G. and Mosler, K., 1997. Zonoid trimming for multivariate distributions. The Annals of Statistics, 25(5), pp.1998-2017. http://dx.doi.org/10.1214/aos/1069362382
[15] Li, J., Zhang, X. and Jeske, D.R., 2013. Nonparametric multivariate CUSUM control
charts for location and scale changes. Journal of Nonparametric Statistics, 25(1), pp.1-20.
http://dx.doi.org/10.1080/10485252.2012.726992
[16] Liu, R.Y., 1995. Control charts for multivariate processes. Journal of the American Statistical Association, 90(432), pp.1380-1387.
[17] Liu, R.Y., Singh, K. and Teng*, J.H., 2004. DDMA-charts: nonparametric multivariate moving
average control charts based on data depth. Allgemeines Statistisches Archiv, 88(2), pp.235-258.
http://dx.doi.org/10.1007/s101820400170
[18] Liu, R.Y., 1988. On a notion of simplicial depth. Proceedings of the National Academy of Sciences, 85(6), pp.1732-1734. http://dx.doi.org/10.1073/pnas.85.6.1732
[19] Liu, R.Y. and Singh, K., 1993. A quality index based on data depth and multivariate rank tests. Journal of the American Statistical Association, 88(421), pp.252-260.
[20] Liu, R.Y., 1992. Data depth and multivariate rank tests, in (ed.) Y. Dodge, L1-Statistical Analysis and Related Methods.
[21] Möttönen, J. and Oja, H., 1995. Multivariate spatial sign and rank methods. Journaltitle of Nonparametric Statistics, 5(2), pp.201-213.
[22] Nasrollahzadeh, S., Moghadam, M.B. and Farnoosh, R., 2023. A Shewhart-type nonparametric multivariate depth-based control chart for monitoring location. Communications in Statistics-Theory and Methods, 52(20), pp.7385-7404. http://dx.doi.org/10.1080/03610926.2022.2045023
[23] Nasrollahzadeh, S., Bameni Moghadam, M. and Bayati, M. (2024). An efficient multivariate depthbased EWMA control chart for monitoring location. Journal of Control and Decision, 1-11.
[24] Pokotylo, O., Mozharovskyi, P. and Dyckerhoff, R., 2016. Depth and depth-based classification with R-package ddalpha. arXiv preprint arXiv:1608.04109. https://doi.org/10.48550/arXiv.1608.04109
[25] Qiu, P. and Hawkins, D., 2001. A rank-based multivariate CUSUM procedure. Technometrics, 43(2), pp.120-132. https://doi.org/10.1198/004017001750386242
[26] Qiu, P. and Hawkins, D., 2003. A nonparametric multivariate cumulative sum procedure for detecting shifts in all directions. Journal of the Royal Statistical Society Series D: The Statistician, 52(2), pp.151-164. https://doi.org/10.1111/1467-9884.00348
[27] Qiu, P., 2008. Distribution-free multivariate process control based on log-linear modeling. IIE Transactions, 40(7), pp.664-677. http://dx.doi.org/10.1080/07408170701744843
[28] Qiu, P., 2013. Introduction to statistical process control. CRC press. https://doi.org/10.1201/b15016
[29] Randles, R.H., 2000. A simpler, affine-invariant, multivariate, distribution-free
sign test. Journal of the American Statistical Association, 95(452), pp.1263-1268.
http://dx.doi.org/10.1080/01621459.2000.10474326
[30] Sun, R. and Tsung, F., 2003. A kernel-distance-based multivariate control chart using support vector methods. International Journal of Production Research, 41(13), pp.2975-2989.
http://dx.doi.org/10.1080/1352816031000075224
[31] Tukey, J.W., 1975. Mathematics and the picturing of data. In Proceedings of the
International Congress of Mathematicians, Vancouver, 1975 (Vol. 2, pp. 523-531).
https://doi.org/10.20551/jscswabun.23.2_81
[32] Tyler, D.E., 1987. A distribution-free M-estimator of multivariate scatter. The annals of Statistics, pp.234-251. http://dx.doi.org/10.1214/aos/1176350263
[33] Zou, C. and Tsung, F., 2011. A multivariate sign EWMA control chart. Technometrics, 53(1), pp.84-97. http://dx.doi.org/10.2307/40997295
[34] Zou, C., Wang, Z. and Tsung, F., 2012. A spatial rank‐based multivariate EWMA control chart. Naval Research Logistics (NRL), 59(2), pp.91-110. https://doi.org/10.1002/nav.21475
[35] Zou, C., W. Jiang, and F. Tsung. 2011. A LASSO-based diagnostic framework for multivariate statistical process control. Technometrics 53 (3):297–309. doi:10.1198/TECH.2011.10034.
[36] Zuo, Y. and Serfling, R., 2000. General notions of statistical depth function. Annals of statistics, pp.461-482. http://dx.doi.org/10.1214/aos/1016218226