A New Depth-based Multivariate Control Chart in Phase II

Document Type : Original Paper

Authors

1 Department of Statistics, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran.

2 Department of Statistics, Faculty of Mathematical Sciences,, Shahid Beheshti University, Tehran, Iran

10.22055/jamm.2025.46970.2277

Abstract

This article presents a new multivariate non-parametric control chart in Phase II based on depth functions. The proposed statistic is an affine invariant and asymptotically free distribution. Indeed, the asymptotic distribution of the proposed statistic is derived under the in-control process. Based on simulation studies, the performance of the proposed statistic, using several depth functions, has been evaluated and compared with three competing statistics. The results show that the introduced statistic performs adequately and, in some cases, outperforms the competing statistics. A real dataset has been analyzed based on the proposed chart.

Keywords

Main Subjects


[1] Barale, M.S. and Shirke, D.T., 2023. A control chart based on data depth for monitoring the variability in a multivariate process. Communications in Statistics-Simulation and Computation, pp.1-15. http://dx.doi.org/10.1080/03610918.2023.2185932
[2] Bell, R.C., Jones-Farmer, L.A. and Billor, N., 2014. A distribution-free multivariate phase I location control chart for subgrouped data from elliptical distributions. Technometrics, 56(4), pp.528-538. http://dx.doi.org/10.1080/00401706.2013.879264
[3] Boone, J.M. and Chakraborti, S., 2012. Two simple Shewhart‐type multivariate nonparametric control charts. Applied Stochastic Models in Business and Industry, 28(2), pp.130-140.
https://doi.org/10.1002/asmb.900
[4] Boone, J.M., 2010. Contributions to multivariate control charting: studies of the z chart and four nonparametric charts. The University of Alabama.
[5] Capizzi, G. and Masarotto, G. (2024). Distribution-Free Multivariate Phase I Shewhart Control Charts: Analysis, Comparisons and Recommendations. In Advanced Statistical Methods in Process Monitoring, Finance, and Environmental Science: Essays in Honour of Wolfgang Schmid (pp. 59-81). Cham: Springer Nature Switzerland.
[6] Chakraborti, S., Van der Laan, P. and Bakir, S.T., 2001. Nonparametric control charts:
an overview and some results. Journal of quality technology, 33(3), pp.304-315.
https://doi.org/10.1080/00224065.2001.11980081
[7] Chakraborti, S. and Graham, M.A., 2007. Nonparametric control charts. Encyclopedia of statistics in quality and reliability, 1, pp.415-429. https://doi.org/10.1002/9781118445112.stat02699
[8] Chakraborti, S. and Graham, M.A., 2019. Nonparametric (distribution-free) control
charts: An updated overview and some results. Quality Engineering, 31(4), pp.523-544.
https://doi.org/10.1080/08982112.2018.1549330
[9] Dai, Y., Zhou, C. and Wang, Z., 2004. Multivariate CUSUM Control Charts Based on Data Depth For Preliminary Analysis. The Natural Sciences Foundation of Tianjin, 33603111.
[10] Dehghan, S. and Faridrohani, M.R., 2019. Affine invariant depth-based tests for the multivariate one-sample location problem. Test, 28(3), pp.671-693. http://dx.doi.org/10.1007/s11749-018-0593-3
[11] Donoho, D.L. and Gasko, M., 1992. Breakdown properties of location estimates based
on halfspace depth and projected outlyingness. The Annals of Statistics, pp.1803-1827.
http://dx.doi.org/10.1214/aos/1176348890
[12] Hössjer, O. and Croux, C., 1995. Generalizing univariate signed rank statistics for testing and estimating a multivariate location parameter. Journal of Nonparametric Statistics, 4(3), pp.293-308. http://dx.doi.org/10.1080/10485259508832620
[13] Hotelling, H., 1947. Multivariate quality control, techniques of statistical analysis. Eisenhart C, Hastay HW, Wallis WA, editors.
[14] Koshevoy, G. and Mosler, K., 1997. Zonoid trimming for multivariate distributions. The Annals of Statistics, 25(5), pp.1998-2017. http://dx.doi.org/10.1214/aos/1069362382
[15] Li, J., Zhang, X. and Jeske, D.R., 2013. Nonparametric multivariate CUSUM control
charts for location and scale changes. Journal of Nonparametric Statistics, 25(1), pp.1-20.
http://dx.doi.org/10.1080/10485252.2012.726992
[16] Liu, R.Y., 1995. Control charts for multivariate processes. Journal of the American Statistical Association, 90(432), pp.1380-1387.
[17] Liu, R.Y., Singh, K. and Teng*, J.H., 2004. DDMA-charts: nonparametric multivariate moving
average control charts based on data depth. Allgemeines Statistisches Archiv, 88(2), pp.235-258.
http://dx.doi.org/10.1007/s101820400170
[18] Liu, R.Y., 1988. On a notion of simplicial depth. Proceedings of the National Academy of Sciences, 85(6), pp.1732-1734. http://dx.doi.org/10.1073/pnas.85.6.1732
[19] Liu, R.Y. and Singh, K., 1993. A quality index based on data depth and multivariate rank tests. Journal of the American Statistical Association, 88(421), pp.252-260.
[20] Liu, R.Y., 1992. Data depth and multivariate rank tests, in (ed.) Y. Dodge, L1-Statistical Analysis and Related Methods.
[21] Möttönen, J. and Oja, H., 1995. Multivariate spatial sign and rank methods. Journaltitle of Nonparametric Statistics, 5(2), pp.201-213.
[22] Nasrollahzadeh, S., Moghadam, M.B. and Farnoosh, R., 2023. A Shewhart-type nonparametric multivariate depth-based control chart for monitoring location. Communications in Statistics-Theory and Methods, 52(20), pp.7385-7404. http://dx.doi.org/10.1080/03610926.2022.2045023
[23] Nasrollahzadeh, S., Bameni Moghadam, M. and Bayati, M. (2024). An efficient multivariate depthbased EWMA control chart for monitoring location. Journal of Control and Decision, 1-11.
[24] Pokotylo, O., Mozharovskyi, P. and Dyckerhoff, R., 2016. Depth and depth-based classification with R-package ddalpha. arXiv preprint arXiv:1608.04109. https://doi.org/10.48550/arXiv.1608.04109
[25] Qiu, P. and Hawkins, D., 2001. A rank-based multivariate CUSUM procedure. Technometrics, 43(2), pp.120-132. https://doi.org/10.1198/004017001750386242
[26] Qiu, P. and Hawkins, D., 2003. A nonparametric multivariate cumulative sum procedure for detecting shifts in all directions. Journal of the Royal Statistical Society Series D: The Statistician, 52(2), pp.151-164. https://doi.org/10.1111/1467-9884.00348
[27] Qiu, P., 2008. Distribution-free multivariate process control based on log-linear modeling. IIE Transactions, 40(7), pp.664-677. http://dx.doi.org/10.1080/07408170701744843
[28] Qiu, P., 2013. Introduction to statistical process control. CRC press. https://doi.org/10.1201/b15016
[29] Randles, R.H., 2000. A simpler, affine-invariant, multivariate, distribution-free
sign test. Journal of the American Statistical Association, 95(452), pp.1263-1268.
http://dx.doi.org/10.1080/01621459.2000.10474326
[30] Sun, R. and Tsung, F., 2003. A kernel-distance-based multivariate control chart using support vector methods. International Journal of Production Research, 41(13), pp.2975-2989.
http://dx.doi.org/10.1080/1352816031000075224
[31] Tukey, J.W., 1975. Mathematics and the picturing of data. In Proceedings of the
International Congress of Mathematicians, Vancouver, 1975 (Vol. 2, pp. 523-531).
https://doi.org/10.20551/jscswabun.23.2_81
[32] Tyler, D.E., 1987. A distribution-free M-estimator of multivariate scatter. The annals of Statistics, pp.234-251. http://dx.doi.org/10.1214/aos/1176350263
[33] Zou, C. and Tsung, F., 2011. A multivariate sign EWMA control chart. Technometrics, 53(1), pp.84-97. http://dx.doi.org/10.2307/40997295
[34] Zou, C., Wang, Z. and Tsung, F., 2012. A spatial rank‐based multivariate EWMA control chart. Naval Research Logistics (NRL), 59(2), pp.91-110. https://doi.org/10.1002/nav.21475
[35] Zou, C., W. Jiang, and F. Tsung. 2011. A LASSO-based diagnostic framework for multivariate statistical process control. Technometrics 53 (3):297–309. doi:10.1198/TECH.2011.10034.
[36] Zuo, Y. and Serfling, R., 2000. General notions of statistical depth function. Annals of statistics, pp.461-482. http://dx.doi.org/10.1214/aos/1016218226