New subclasses of U-spaces

Document Type : Original Paper

Authors

1 Shahid Chamran University of Ahvaz

2 Department of Mathematics Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran

10.22055/jamm.2025.49276.2363

Abstract

A topological space X is called a U$-space if any two disjoint cozero-sets can be separated by a clopen set. The paper introduces and studies two new subclasses of U-spaces, which generalize the classes P-spaces and basically disconnected spaces. Some algebraic and topological characterizations of the new spaces are given. The relationship between these spaces is described and some counterexamples are presented which show that these spaces are different from each other.

Keywords

Main Subjects


[1] Abu Osba, E., Henriksen, M. and Alkam, O., 2004. Essential P-spaces: a generalization of door
spaces, Comment. Math. Univ. Carol., (45), 509-518.
[2] Al-Ezeh, H., 1989. Exchange PF-rings and almost PP-rings, Internat. J. Math. Math. Sci., (12),
725-727. doi:10.1155/S016117128900089X
[3] Azarpanah, F., 2002. When is C(X) a clean ring?, Acta Math. Hungar., (94), 53-58.
doi:10.1023/A:1015654520481
[4] Azarpanah, F., Ghashghaei, E. and Ghoulipour, M., 2020. C(X): Something old and something
new, Commun. Algebra, (49), 185-206. doi:10.1080/00927872.2020.1797070
[5] Azarpanah, F., Mohamadian, R. and Monjezi, P., 2021. On PF -spaces, Topology Appl., (302), 107821, 8pp. doi:10.1016/j.topol.2021.107821
[6] Banaschewski, B., 2000. Gelfand and exchange rings: their spectra in pointfree topology, Arab. J. Sci. Eng. Sect. C: Theme Issues, (25), 3-22.
[7] Burgess, W.D. and Raphael, R., 2020. Tychonoff spaces and a ring theoretic order on C(X), Topology Appl., (279), 107250, 10 pp. doi:10.1016/j.topol.2020.107250
[8] Brookshear, J.G., 1978. On projective prime ideals in C(X), Proc. Amer. Math. Soc., (69), 203-204.
doi:10.1090/S0002-9939-1978-0470929-5
[9] De Marco, G., 1983. Projectivity of pure ideals, Rend. Sem. Mat. Univ. Padova, (68), 289-304.
[10] De Marco, G. and Orsatti, A., 1971. Commutative rings in which every prime ideal is contained in a unique maximal ideal, Proc. Amer. Math. Soc., (30), 459-466. doi:10.2307/2037716
[11] Endo, S., 1961. On semi-hereditary rings, J. Math. Soc. Japan, (13), 109-119. doi:
10.2969/JMSJ/01320109
[12] Engelking, R., 1989. General Topology, Heldermann Verlag, Berlin.
[13] Gillman, L. and Jerison, M., 1960. Rings of Continuous Functions, D. Van Nostrand Company, Inc., Princeton, N. J..
[14] Gillman, L. and Henriksen, M., 1956. Rings of continuous functions in which every finitely generated ideal is principal, Trans. Amer. Math. Soc, (82), 366-391. doi:10.1090/S0002-9947-1956-0078980-4
[15] Gillman, L. and Kohls, C.W., 1959. Convex and pseudoprime ideals in rings of continuous functions,Math. Z., (72), 399-409. doi:10.1007/BF01162963
[16] Goodearl, K.R., Warfield, R.B., 1976. Algebras over zero-dimensional rings, Math. Ann., (223),
157-168. doi:10.1007/BF01360879
[17] Johnstone, P.T., 1982. Stone Spaces, Cambridge Stud. Adv. Math., 3, Cambridge Univ. Press,
Cambridge.
[18] Knox, M.L., Levy, R. and McGovern, W.Wm. and Shapiro, J., 2009. Generalizations
of complemented rings with applications to rings of functions, J. Alg. Appl., (8), 17-40.
doi:10.1142/S021949880903138
[19] Kohls, C.W., 1957. Ideals in rings of continuous functions, Fund. Math., (45), 28-50
20] Lam, T.Y., 1999. Lectures on Modules and Rings, Graduate Texts in Mathematics, 189. SpringerVerlag, New York.
[21] Mason, G., 1973. z-ideals and prime ideals, J. Algebra, (26), 280-297. doi:10.1016/0021-
8693(73)90024-0
[22] McGovern, W.Wm., Clean semiprime f-rings with bounded inversion, Comm. Algebra, (31), 3295-3304. doi:10.1081/aGB-120022226
[23] McGovern, W.Wm., Puninski, G. and Rothmaler, P., 2007. When every projective module is a direct sum of finitely generated modules, J. Algebra, (315), 454-481. doi:10.1016/j/jalgebra.2007.01.043
[24] Nicholson, W.K., 1977. Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., (229), 269-278. doi:10.2307/1998510
[25] Niefeld S. and Rosenthal, K., 1987. Sheaves of integral domains on stone spaces, J. Pure Appl.
Algebra, (47), 173-179. doi:10.1016/0022-4049(87)90060-0
[26] Varadarajan, K., 2000. Study of Hopficity in certain classes of rings, Comm. Algebra, (28), 771-783. doi:10.1080/00927870008826858
[27] Xiang, Y., 2017. A generalization of VNL-Rings and PP-Rings, Journal of Mathematical Research with Applications, (37), 199-208.