[1] Balbes, B. and Dwinge, P., 1975. Distributive Lattices. Univ. of Missouri Press, Columbia.
[2] Beem, J. K., Ehrlich, P. and Easley, K., 1996. Global Lorentzian Geometry. Second Edition. Hong
Kong: Taylor & Francis.
[3] Birkhoff, G., 1967. Lattice Theory. Amer. Math. Soc. Coll. Publ, 25.
[4] Burkhardt, C. E. and Leventhal, J. J., 2008. Foundations of quantum physics. Springer Science and Business Media. doi: 10.1007/9780387776521
[5] Casini, H., 2002. The logic of closed spacetime subsets. Classical and Quantum Gravity, 19(24),
pp.6389–6104. doi: 10.1088/02649381/19/24/308
[6] Cegła, W. and Florek, J., 2005. Orthomodular lattices generated by graphs of functions. Communications in mathematical physics, 259, pp.363–366. doi: 10.1007/s0022000513621
[7] Cegła, W. and Florek, J., 2005. Ortho and causal closure as a closure operations in the causal logic. International Journal of Theoretical Physics, 44, pp.11–19 doi: 10.1007/s1077300514305
[8] Cegła, W. and Florek, J., 2006. The covering law in orthomodular lattices generated by graphs of functions. Communications in mathematical physics, 268, pp.853–856. doi: 10.1007/s002200060116z
[9] Cegła, W., Florek, J. and Janccewicz, B., 2017. Orthomodular lattice in Lorentzian globally hyperbolic spacetime. Reports on Mathematical Physics, 79(2), pp.187–195. doi: 10.1016/S0034
4877(17)300344
[10] Cegła, W. and Jadczyk, A. Z., 1977. Causal logic of Minkowski space. Communications in mathematical physics, 57, pp. 213–317. doi: 10.1007/bf01614163
[11] Cegła, W. and Janccewicz, B., 2013. Nonmodular lattices generated by the causal structure. Journal of Mathematical Physics, 54 (12), pp.122501–122505. doi: 10.1063/1.4850855
[12] De Barra, G., 2000. Measure Theory and Integration. Univ. of London, Columbia. doi:
10.1533/9780857099525.frontmatter
[13] Deng, T., Chen, Y., Xu, W. and Dai, Q., 2007. A novel approach to fuzzy rough sets based on a fuzzy covering. Information Sciences, 177(11), pp.23082326. doi: 10.1016/j.ins.2006.11.013
[14] Estaji, A. A., Vatandoost, M. and Pourkhandani, R., 2019. Fixed points of covering upper and lower approximation operators. Soft Computing, 23, pp.11447–11460. doi: 10.1007/s00500019041130
[15] Foulis, D.J. and Randall, C.H., 1971. Lexicographic orthogonality. Journal of Combinatorial Theory, Series A, 11(2), pp.157162. doi: 10.1016/00973165(71)900409
[16] Foulis, D.J. and Randall, C.H., 1974.The empirical logic approach to the physical sciences. Hartkämper, A., Neumann, H. Foundations of Quantum Mechanics and Ordered Linear Spaces. Lecture Notes in Physics, Springer, Berlin, Heidelberg, 29, pp. 230–249. doi: 10.1007/3540067256−18
[17] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M. and Scott, D.S., 2009. Continuous lattices and domains. Cambridge University Press, 93. doi: 10.1017/CBO9780511542725
[18] Hawking, S.W. and Ellis, G.F., 2023. The large scale structure of spacetime. Cambridge University Press, 50th Anniversary Edition. doi: 10.1017/9781009253161
[19] Koppitz, J. and Denecke, K., 2006. Closure operators and Lattices. MSolid Varieties of Algebras, Springer, pp.29–47. doi: 10.1007/0387308067−2
[20] Pawlak, Z., 1991. Rough Sets: Theoretical Aspects of Reasoning about Data. Springer Science &Business Media. doi: 10.1007/9789401135344
[21] Pawlak, Z., 1987. Rough logic. Bull. Polish Acad. Sci. Tech. Sci, 35, pp.253–258.
[22] Pawlak, Z., 1982. Rough sets. Int. J. Comput. Math. Inform. Sci, 11, pp.341–356.
[23] Penrose, R., 1972. Techniques in differential topology in relativity. Society for Applied and Industrial Mathematics. Society for Industrial and Applied Mathematics.
[24] Pták, P. and Pulmannová, S., 1991. Orthomodular structures as quantum logics. Fund. Theories Phys.,Dordrecht: Kluwer, 55.
[25] Shum, K.P., 2017. A Note on Kuratowski’s Theorem and Its Related Topics. Advances in Pure Mathematics, 7(08) , pp.383–406. doi: 10.4236/apm.2017.78025
[26] Vatandoost, M., Estaji, A.A. and Pourkhandani, R., 2019. A generalized modal logic in causal structures. Theoretical Computer Science, 768, pp.4353. doi: 10.1016/j.tcs.2019.02.006
[27] Vatandoost, M., Pourkhandani, R. and Ebrahimi, N., 2019. On null and causal pseudoconvex spacetimes. J. Math. Phys., 60(1). doi:10.1063/1.5081898
[28] Yang, B., Zhu, W. (2014). A New Type of CoveringBased Rough Sets. Miao, D., Pedrycz, W., Ślȩzak,D., Peters, G., Hu, Q., Wang, R. (eds) Rough Sets and Knowledge Technology. RSKT 2014. Lecture Notes in Computer Science, Springer, Cham. doi: 10.1007/9783319117409−45
[29] Zhu, W. and Wang, F.Y., 2007. On three types of coveringbased rough sets. Transactions on knowledge and data engineering, 19(8), pp.1131–1144. doi: 10.1109/TKDE.2007.1044
[30] Zhu, W., 2009. Relationship among basic concepts in coveringbased rough sets. Inform. Sci.,
179(14), pp.2478–2486. doi: 10.1016/j.ins.2009.02.013