Orthomodular lattices in causal structure of space-time

Document Type : Original Paper

Authors

Department of pure mathematics and computer science of Hakim Sabzevari University

Abstract

Rough set theory provides a convenient framework to study and compare algebraic operators in many mathematical structures. In this paper, we establish a connection between the causal structure of space-time in Einstein's theory of relativity and the theory of Rough sets based on coverage, and by means of this, we define the covering approximation operators for the causal structure and show that some of these operators are the same basic and common operators in the causal structure of space-time such as I^± ، J^±، D، ⊥, and some operators like ⊥' and ⊥'⊥' and different operators in the causal structure. Recently, causal logic on space-times has been introduced by a complete orthomodular lattice consisting of all constants of the clouser operator ⊥⊥. Here, through the orthogonal operator ⊥' , we introduce another complete lattice and determine the elements of this lattice in causal space-times. Also, we provide a necessary and sufficient condition for this lattice to be orthomodular in global hyperbolic space-times. Finally, we show that these two lattices are isomorphic in the case of two-dimensional Minkowski space-time, but this is not necessarily true in the general case.

Keywords

Main Subjects


[1] Balbes, B. and Dwinge, P., 1975. Distributive Lattices. Univ. of Missouri Press, Columbia.
[2] Beem, J. K., Ehrlich, P. and Easley, K., 1996. Global Lorentzian Geometry. Second Edition. Hong
Kong: Taylor & Francis.
[3] Birkhoff, G., 1967. Lattice Theory. Amer. Math. Soc. Coll. Publ, 25.
[4] Burkhardt, C. E. and Leventhal, J. J., 2008. Foundations of quantum physics. Springer Science and Business Media. doi: 10.1007/978­0­387­77652­1
[5] Casini, H., 2002. The logic of closed space­time subsets. Classical and Quantum Gravity, 19(24),
pp.6389–6104. doi: 10.1088/0264­9381/19/24/308
[6] Cegła, W. and Florek, J., 2005. Orthomodular lattices generated by graphs of functions. Communications in mathematical physics, 259, pp.363–366. doi: 10.1007/s00220­005­1362­1
[7] Cegła, W. and Florek, J., 2005. Ortho and causal closure as a closure operations in the causal logic. International Journal of Theoretical Physics, 44, pp.11–19 doi: 10.1007/s10773­005­1430­5
[8] Cegła, W. and Florek, J., 2006. The covering law in orthomodular lattices generated by graphs of functions. Communications in mathematical physics, 268, pp.853–856. doi: 10.1007/s00220­006­0116­z
[9] Cegła, W., Florek, J. and Janccewicz, B., 2017. Orthomodular lattice in Lorentzian globally hyperbolic space­time. Reports on Mathematical Physics, 79(2), pp.187–195. doi: 10.1016/S0034­
4877(17)30034­4
[10] Cegła, W. and Jadczyk, A. Z., 1977. Causal logic of Minkowski space. Communications in mathematical physics, 57, pp. 213–317. doi: 10.1007/bf01614163
[11] Cegła, W. and Janccewicz, B., 2013. Non­modular lattices generated by the causal structure. Journal of Mathematical Physics, 54 (12), pp.122501–122505. doi: 10.1063/1.4850855
[12] De Barra, G., 2000. Measure Theory and Integration. Univ. of London, Columbia. doi:
10.1533/9780857099525.frontmatter
[13] Deng, T., Chen, Y., Xu, W. and Dai, Q., 2007. A novel approach to fuzzy rough sets based on a fuzzy covering. Information Sciences, 177(11), pp.2308­2326. doi: 10.1016/j.ins.2006.11.013
[14] Estaji, A. A., Vatandoost, M. and Pourkhandani, R., 2019. Fixed points of covering upper and lower approximation operators. Soft Computing, 23, pp.11447–11460. doi: 10.1007/s00500­019­04113­0
[15] Foulis, D.J. and Randall, C.H., 1971. Lexicographic orthogonality. Journal of Combinatorial Theory, Series A, 11(2), pp.157­162. doi: 10.1016/0097­3165(71)90040­9
[16] Foulis, D.J. and Randall, C.H., 1974.The empirical logic approach to the physical sciences. Hartkämper, A., Neumann, H. Foundations of Quantum Mechanics and Ordered Linear Spaces. Lecture Notes in Physics, Springer, Berlin, Heidelberg, 29, pp. 230–249. doi: 10.1007/3­540­06725­6−18
[17] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M. and Scott, D.S., 2009. Continuous lattices and domains. Cambridge University Press, 93. doi: 10.1017/CBO9780511542725
[18] Hawking, S.W. and Ellis, G.F., 2023. The large scale structure of space­time. Cambridge University Press, 50th Anniversary Edition. doi: 10.1017/9781009253161
[19] Koppitz, J. and Denecke, K., 2006. Closure operators and Lattices. M­Solid Varieties of Algebras, Springer, pp.29–47. doi: 10.1007/0­387­30806­7−2
[20] Pawlak, Z., 1991. Rough Sets: Theoretical Aspects of Reasoning about Data. Springer Science &Business Media. doi: 10.1007/978­94­011­3534­4
[21] Pawlak, Z., 1987. Rough logic. Bull. Polish Acad. Sci. Tech. Sci, 35, pp.253–258.
[22] Pawlak, Z., 1982. Rough sets. Int. J. Comput. Math. Inform. Sci, 11, pp.341–356.
[23] Penrose, R., 1972. Techniques in differential topology in relativity. Society for Applied and Industrial Mathematics. Society for Industrial and Applied Mathematics.
[24] Pták, P. and Pulmannová, S., 1991. Orthomodular structures as quantum logics. Fund. Theories Phys.,Dordrecht: Kluwer, 55.
[25] Shum, K.P., 2017. A Note on Kuratowski’s Theorem and Its Related Topics. Advances in Pure Mathematics, 7(08) , pp.383–406. doi: 10.4236/apm.2017.78025
[26] Vatandoost, M., Estaji, A.A. and Pourkhandani, R., 2019. A generalized modal logic in causal structures. Theoretical Computer Science, 768, pp.43­53. doi: 10.1016/j.tcs.2019.02.006
[27] Vatandoost, M., Pourkhandani, R. and Ebrahimi, N., 2019. On null and causal pseudoconvex spacetimes. J. Math. Phys., 60(1). doi:10.1063/1.5081898
[28] Yang, B., Zhu, W. (2014). A New Type of Covering­Based Rough Sets. Miao, D., Pedrycz, W., Ślȩzak,D., Peters, G., Hu, Q., Wang, R. (eds) Rough Sets and Knowledge Technology. RSKT 2014. Lecture Notes in Computer Science, Springer, Cham. doi: 10.1007/978­3­319­11740­9−45
[29] Zhu, W. and Wang, F.Y., 2007. On three types of covering­based rough sets. Transactions on knowledge and data engineering, 19(8), pp.1131–1144. doi: 10.1109/TKDE.2007.1044
[30] Zhu, W., 2009. Relationship among basic concepts in covering­based rough sets. Inform. Sci.,
179(14), pp.2478–2486. doi: 10.1016/j.ins.2009.02.013