[1] Aghababaei Jazi, M., Jones, G. and Lai, C.D., 2012. First‐order integer valued AR processes
with zero inflated Poisson innovations. Journal of Time Series Analysis, 33(6), pp.954-963.
http://dx.doi.org/10.1111/j.1467-9892.2012.00809.x
[2] Aghababaei Jazi, M., Jones, G. and Lai, C.D., 2022. Integer valued AR (1) with geometric innovations. Journal of the Iranian Statistical Society, 11(2), pp.173-190.
[3] Al‐Osh, M.A. and Alzaid, A.A., 1987. First‐order integer‐valued autoregressive (INAR (1))
process. Journal of Time Series Analysis, 8(3), pp.261-275. http://dx.doi.org/10.1111/j.1467-
9574.1988.tb01521.x
[4] Barreto‐Souza, W., 2015. Zero‐modified geometric INAR (1) process for modelling count time
series with deflation or inflation of zeros. Journal of Time Series Analysis, 36(6), pp.839-852.
http://dx.doi.org/10.1111/jtsa.12131
[5] Barreto-Souza, W., 2019. Mixed poisson INAR (1) processes. Statistical papers, 60(6), pp.2119-2139. http://dx.doi.org/10.1007/s00362-017-0912-x
[6] Bourguignon, M., Rodrigues, J. and Santos-Neto, M., 2019. Extended Poisson INAR (1) processes with equidispersion, underdispersion and overdispersion. Journal of Applied Statistics, 46(1), pp.101-118. http://dx.doi.org/10.1080/02664763.2018.1458216
[7] Bourguignon, M., LP Vasconcellos, K., Reisen, V.A. and Ispány, M., 2016. A Poisson INAR (1)
process with a seasonal structure. Journal of Statistical Computation and Simulation, 86(2), pp.373-387. http://dx.doi.org/10.1080/00949655.2015.1015127
[8] Bourguignon, M. and Vasconcellos, K.L., 2015. First order non-negative integer valued autoregressive processes with power series innovations. Brazilian Journal of Probability and Statistics, 29(1) , pp.71–93. http://dx.doi.org/10.1214/13-bjps229
[9] Bourguignon, M. and Weiß, C.H., 2017. An INAR (1) process for modeling count
time series with equidispersion, underdispersion and overdispersion. Test, 26(4), pp.847-868.
http://dx.doi.org/10.1007/s11749-017-0536-4
[10] Brannas, K., 1995. Explanatory variables in the AR (1) count data model. Umea economic studies, 381. http://dx.doi.org/10.2139/ssrn.1313842
[11] Buteikis, A. and Leipus, R., 2020. An integer-valued autoregressive process for seasonality. Journal of Statistical Computation and Simulation, 90(3), pp.391-411.
http://dx.doi.org/10.1080/00949655.2019.1685995
[12] Delaporte, P., 1959. Quelques problèmes de statistique mathématique posés par l’assurance automobile et le bonus pour non sinistre. Bulletin Trimestriel de l’Institut des Actuaires Français, 227,pp.87-102.
[13] Ferland, R., Latour, A. and Oraichi, D., 2006. Integer‐valued GARCH process. Journal of time series analysis, 27(6), pp.923-942. http://dx.doi.org/10.1111/j.1467-9892.2006.00496.x
[14] Fernández-Fontelo, A., Fontdecaba, S., Alba, A. and Puig, P., 2017. Integer-valued
AR processes with Hermite innovations and time-varying parameters: An application to
bovine fallen stock surveillance at a local scale. Statistical modelling, 17(3), pp.172-195.
http://dx.doi.org/10.1177/1471082x16683113
[15] Freeland, R.K., 1998. Statistical analysis of discrete time series with application to the analysis of workers’ compensation claims data (Doctoral dissertation, University of British Columbia).
http://dx.doi.org/10.14288/1.0088709
[16] Freeland, R.K. and McCabe, B., 2005. Asymptotic properties of CLS estimators in the Poisson AR (1) model. Statistics & probability letters, 73(2), pp.147-153. http://dx.doi.org/10.1016/j.spl.2005.03.006
[17] Freeland, R.K. and McCabe, B.P., 2004. Analysis of low count time series data by Poisson autoregression. Journal of time series analysis, 25(5), pp.701-722.
http://dx.doi.org/10.1111/j.1467- 9892.2004.01885.x
[18] Jose, K.K. and Mariyamma, K.D., 2016. A note on an integer valued time series model with Poisson–negative binomial marginal distribution. Communications in Statistics-Theory and Methods, 45(1), pp.123-131. http://dx.doi.org/10.1080/03610926.2013.826979
[19] Jung, R.C., Ronning, G. and Tremayne, A.R., 2005. Estimation in conditional first order autoregression with discrete support. Statistical papers, 46, pp.195-224. http://dx.doi.org/10.1007/bf02762968
[20] Kim, H.Y. and Park, Y., 2008. A non-stationary integer-valued autoregressive model. Statistical
papers, 49, pp.485-502. http://dx.doi.org/10.1007/s00362-006-0028-1
[21] Kim, H. and Lee, S., 2017. On first-order integer-valued autoregressive process with Katz
family innovations. Journal of Statistical Computation and Simulation, 87(3), pp.546-562.
http://dx.doi.org/10.1080/00949655.2016.1219356
[22] Klimko, L.A. and Nelson, P.I., 1978. On conditional least squares estimation for stochastic processes. The Annals of statistics, pp.629-642. http://dx.doi.org/10.1214/aos/1176344207
[23] McKenzie, E., 1985. Some simple models for discrete variate time series 1. JAWRA Journal of
the American Water Resources Association, 21(4), pp.645-650. http://dx.doi.org/10.1111/j.1752-
1688.1985.tb05379.x
[24] Quoreshi, S., Uddin, R. and Mamode Khan, N., 2020. A review of INMA integervalued model class, application and further development. Filomat, 34(1), pp.143-152.
http://dx.doi.org/10.2298/fil2001143q
[25] Scotto, M.G., Weiss, C.H. and Gouveia, S., 2015. Thinning-based models in the analysis of integer-valued time series: a review. Statistical Modelling, 15(6), pp.590-618.
http://dx.doi.org/10.1177/1471082x15584701
[26] Shalbaf, M., Parham, G. and Chinipardaz, R., 2022. Binomial Thinning Integer-Valued AR (1) with Poisson–ff Fold Zero Modified Geometric Innovations. Journal of Sciences, Islamic Republic of Iran,33(1), pp.55-63. https://doi.org/10.22059/jsciences.2021.320996.1007633
[27] Steutel, F.W. and van Harn, K., 1979. Discrete analogues of self-decomposability and stability. The Annals of Probability, pp.893-899. http://dx.doi.org/10.1214/aop/1176994950
[28] Silva, M.E. and Oliveira, V.L., 2005. Difference equations for the higher order moments
and cumulants of the INAR (p) model. Journal of Time Series Analysis, 26(1), pp.17-36.
http://dx.doi.org/10.1111/j.1467-9892.2005.00388.x
[29] Tian, S., Wang, D. and Cui, S., 2020. A seasonal geometric INAR process based on negative binomial thinning operator. Statistical Papers, 61, pp.2561-2581. http://dx.doi.org/10.1007/s00362-018-1060-7
[30] Weiß, C.H., 2008. Thinning operations for modeling time series of counts—a survey. AStA Advances in Statistical Analysis, 92, pp.319-341. http://dx.doi.org/10.1007/s10182-008-0072-3
[31] Weiß, C.H., 2009. Controlling jumps in correlated processes of Poisson counts. Applied Stochastic Models in Business and Industry, 25(5), pp.551-564. https://doi.org/10.1002/asmb.744
[32] Weiß, C.H., 2009. Modelling time series of counts with overdispersion. Statistical Methods and Applications, 18, pp.507-519. https://doi.org/10.1007/s10260-008-0108-6
[33] Willmot, G.E. and Sundt, B., 1989. On evaluation of the Delaporte distribution and related distributions. Scandinavian Actuarial Journal, 1989(2), pp.101-113.
https://doi.org/10.1080/03461238.1989.10413859
[34] Zheng, H., Basawa, I.V. and Datta, S., 2006. Inference for pth‐order random coefficient
integer‐valued autoregressive processes. Journal of Time Series Analysis, 27(3), pp.411-440.
https://doi.org/10.1111/j.1467-9892.2006.00472.x
[35] Zhu, R. and Joe, H., 2006. Modelling count data time series with Markov processes based on binomial thinning. Journal of Time Series Analysis, 27(5), pp.725-738. https://doi.org/10.1111/j.1467-9892.2006.00485.x