Bayesian Inference Based on type-I Hybrid Censored Data from a Two-Parameter Exponential Distribution

Authors

Department of Statistics, Tehran University, Tehran, Iran.

Abstract

A hybrid censoring is a mixture of type-I and type-II censoring schemes. It is categorized to  type-I and  type-II hybrid censored based on how the experiment set to terminate. In this paper, we describe  the  type-I hybrid censoring where lifetime variables have a two-parameters  exponential distribution. Bayes estimation of unknown parameters under  squared  error loss function is developed. Among several methods of constructing the optimal procedures in the context of robust  Bayesian  methodology, we obtain posterior  regret  gamma minimax estimation of unknown parameters under  squared  error  loss function.  Finally, we discuss  minimaxity and admissibility of the generalized Bayes estimator under squared error loss.

Keywords


[1] Epstein, B. (1954), Truncated life-tests in the exponential case, Annals of Mathematical Statistics, 25, 555-564. [2] Fairbanks, K., Madsan, R. and Dykstra, R. (1982), A confidence interval for an exponential parameter from hybrid life-test, Journal of American Statistical Association, 77, 137-140. استنباط بیزی از توزیع نمایی دوپارامتری در سانسور هیبرید نوع اول 24 [3] Chen, S.M. and Bhattacharyya, G.K. (1988), Exact confidence bound for an exponential parameter under hybrid censoring. Communication in Statistics, Theory and Methods, 17, 1857-1870. [4] Childs, A., Chandrasekar, B., Balakrishnan, N. and Kundu, D. (2003), Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution. Annals of Institute of Statistical Mathematics, 55, 319-225. [5] Draper, N. and Guttman, T. (1987), Bayesian analysis of Hybrid life-test with
exponential failure times, Annals of Institute of Statistical Mathematics, 39, 219-225. [6] Gupta, R.D. and Kundu, D. (1998), Hybrid censoring with exponential failure distributions. Communication in Statistics, Theory and Methods, 27, 3065-3083. [7] Ebrahimi, N. (1990), Estimating the parameter of an exponential distribution from hybrid life test. Journal of Statistical Planning and Inference, 23, 255-261. [8] Ebrahimi, N. (1992), Prediction intervals for future failures in the exponential distribution under
hybrid censoring. IEEE Transactions on Reliability., 41, 127-132. [9] Kundu, D. (2007), On Hybrid censored weibull distribution, Journal of Statistical Planning and Inference, 137, 2127-2142. [10] Balakrishnan , N. and QihaoXie (2007), Exact inference for a simple Step-Stress model with Type-I hybrid censored data from the exponential distribution , Journal of Statistical Planning and
Inference, 137, 3268-3290. [11] Zen, M. M. and Das Gupta, A. (1993), Estimating a binomial parameter: Is robust Bayes real Bayes?, Statistics and Decisions, 11, 37-60. [12] Gnedenko, B.V., Belyayev, Yu. K. and Solovyev, A.D. (1969), Mathematical Method of Reliability Theory, Academic Press, New York. [13] Berger, J.O. (1985), Statistical Decision Theory and Bayesian Analysis, Springer-Verlag, New York. [14] Royden, H.L. (1963), Real Analysis, Macmillan, New York. [15] Rudin, W. (1964), Principles of Mathematical Analysis, McGrow-Hill, New York.