[1] Epstein, B. (1954), Truncated life-tests in the exponential case, Annals of Mathematical Statistics, 25, 555-564. [2] Fairbanks, K., Madsan, R. and Dykstra, R. (1982), A confidence interval for an exponential parameter from hybrid life-test, Journal of American Statistical Association, 77, 137-140. استنباط بیزی از توزیع نمایی دوپارامتری در سانسور هیبرید نوع اول 24 [3] Chen, S.M. and Bhattacharyya, G.K. (1988), Exact confidence bound for an exponential parameter under hybrid censoring. Communication in Statistics, Theory and Methods, 17, 1857-1870. [4] Childs, A., Chandrasekar, B., Balakrishnan, N. and Kundu, D. (2003), Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution. Annals of Institute of Statistical Mathematics, 55, 319-225. [5] Draper, N. and Guttman, T. (1987), Bayesian analysis of Hybrid life-test with
exponential failure times, Annals of Institute of Statistical Mathematics, 39, 219-225. [6] Gupta, R.D. and Kundu, D. (1998), Hybrid censoring with exponential failure distributions. Communication in Statistics, Theory and Methods, 27, 3065-3083. [7] Ebrahimi, N. (1990), Estimating the parameter of an exponential distribution from hybrid life test. Journal of Statistical Planning and Inference, 23, 255-261. [8] Ebrahimi, N. (1992), Prediction intervals for future failures in the exponential distribution under
hybrid censoring. IEEE Transactions on Reliability., 41, 127-132. [9] Kundu, D. (2007), On Hybrid censored weibull distribution, Journal of Statistical Planning and Inference, 137, 2127-2142. [10] Balakrishnan , N. and QihaoXie (2007), Exact inference for a simple Step-Stress model with Type-I hybrid censored data from the exponential distribution , Journal of Statistical Planning and
Inference, 137, 3268-3290. [11] Zen, M. M. and Das Gupta, A. (1993), Estimating a binomial parameter: Is robust Bayes real Bayes?, Statistics and Decisions, 11, 37-60. [12] Gnedenko, B.V., Belyayev, Yu. K. and Solovyev, A.D. (1969), Mathematical Method of Reliability Theory, Academic Press, New York. [13] Berger, J.O. (1985), Statistical Decision Theory and Bayesian Analysis, Springer-Verlag, New York. [14] Royden, H.L. (1963), Real Analysis, Macmillan, New York. [15] Rudin, W. (1964), Principles of Mathematical Analysis, McGrow-Hill, New York.