[1] Bakhshandeh-Chamazkoti R., Abelian Lie symmetry algebras of two-dimensional quasilinear evolution equations, Mathematical Methods in the Applied Sciences,(2022)
[2] Bluman G. W., Cheviakov A. F. and Anco c., Application of Symmetry Methods to Partial Differential Equations, Springer, New York, 2000.
[3] Bluman G. W. and Cole J. D., The general similarity solution of the heat equation, Journal of Mathematics and Mechanics, 8 (1969) 1025–1042.
[4] Fushchych W. I. and Popovych R. O., Symmetry reduction and exact solutions of the Navier–Stokes equations, Journal of Non-linear Mathematical Physics, 1 (1994), 75–113.
[5] Hejazi S. R., Lie group analaysis, Hamiltonian equations and conservation laws of Born–Infeld equation, Asian-European Journal of Mathematics, 7 (3) (2014) 1450040 (19 pages).
[6] Hejazi S. R., Saberi E. and Mahammadizadeh F., Anisotropic non-linear time-fractional diffusion
equation with a source term: Classification via Lie point symmetries, analytic solutions and numerical simulation, Applied Mathematics and Computation, 391 (2021) 125652.
[7] Hydon P. E., Symmetry Method for Differential Equations, Cambridge University Press, Cambridge, UK, 2000.
[8] Ibragimov N. H., Transformation group applied to mathematical physics, Riedel, Dordrecht 1985.
[9] Ibragimov N. H., Aksenov A. V., Baikov V. A., Chugunov V. A., Gazizov R. K. and Meshkov A G.,
CRC handbook of Lie group analysis of differential equations. In: Ibragimov NH, editor. Applications in engineering and physical sciences, 2 Boca Raton: CRC Press; 1995.
[10] Ibragimov N. H., Non-linear self-adjointness in constructing conservation laws, Arch ALGA 2010–2011;7/8:1–99 [See also arXiv:1109.1728v1[mathph](2011) 1–104].
[11] Ibragimov N. H. and Anderson R. L., Lie theory of differential equations, In: Ibragimov NH, editor. Lie group analysis of differential equations, Symmetries, exact solutions and conservation laws, Boca Raton: CRC Press; 1994.
[12] Lashkarian E. and Hejazi S. R., Polynomial and non-polynomial solutions set for wave equation using Lie point symmetries, Compu
[13] lashkarian E., Hejazi S. R., Habibi N. and Motamednezhad A., Symmetry properties, conservation laws, reduction and numerical approximations of time-fractional cylindrical-Burgers equation, Communications in Nonlinear Science Numererical Simulation, 67 (2019) 176–191.
[14] Naderifard A., Hejazi S. R. and Dastranj E., Symmetry properties, conservation laws and exact solutions of time-fractional irrigation equation, Waves in Random and Complex Media, 1 (29) (2019)178–194.
[15] Naderifard A., Hejazi S. R., Dastranj E. and Motamednezhad A., Symmetry operators and exact solutions of a type of time-fractional Burgers–KdV equation, International Journal of Geometric Methods in Modern Physics, 16 (2) (2019) 1950032 (15 pages).
[16] Olver P. J., Equivalence, Invariant and Symmetry, Cambridge University Press, Cambridge University Press, Cambridge 1995.
[17] Olver P. J., Applications of Lie Groups to Differential equations, Second Edition, GTM, 107, Springer Verlage, New York, 1993.
[18] Ovsiannikov L. V., Group Analysis of Differential Equations, Academic Press, New York, 1982.
[19] Rashidi S., Hejazi S. R. and Dastranj E., Approximate symmetry analysis of nonlinear Rayleigh-wave equation, International Journal of Geometric Methods in Modern Physics, 15 (4) (2018) 1850055 (18pages).
[20] Saberi E. and Hejazi S. R., Lie symmetry analysis, conservation laws and exact solutions of the timefractional generalized Hirota–Satsuma coupled KdV system, Physica A, 492