[1] Alimoradi, M.R., 2024. Quadratic residue codes over Z25. Communications of the Korean Mathematical Society (Accepted).
[2] Balmaceda, J., Betty, R. and Nemenzo, F., 2008. Mass formula for self-dual codes over Zp2 . Discrete Math, 308, pp.2984–3002. doi.org/10.1016/j.disc.2007.08.024.
[3] Batoul, A., Guenda, A. and Gulliver, T., 2014. On self-dual codes over finite chain rings. Des. Codes Cryptogr, 70, pp.347–358. doi. 10.1007/s10623-012-9696-0.
[4] Bonnecaze, A., Sol´e, P., Calderbank, A.R., 1995. Quaternary quadratic residue codes and unimodular lattices. IEEE Trans. Inf. Theory, 41(2), pp.366–377. doi: 10.1109/18.370138.
[5] Burton, D.M, 2007. Elementary Number Theory, 6th Edition,Tata McGraw-Hill Publishing Company Limited, New Delhi.
[6] Chiu, M.H., Yau, S.T., and Yu, Y., 2000. Z8-Cyclic Codes and Quadratic Residue Codes, Advances
in Applied Mathematics, 25, pp.12–33. doi:10.1006/aama.2000.0687.
[7] Dinh, H.Q., L´opez-Permouth, S.R., 2004. Cyclic and negacyclic codes over finite chain rings. IEEE Trans Inf Theory, 50, pp.1728–1744. doi:10.1109/TIT.2004.831789.
[8] Dougherty, S.T., Gulliver, T. and Wong, T., 2006. Self-dual codes over Z8 and Z9, Des. Codes.
Cryptogr, 41, pp.235–249. doi:10.1007/s10623-006-9000-2
[9] Ga, J., Wang, X. and Fu, F.W., 2015. Two self-dual codes with larger lengths over Z9.Discrete
Mathematics, Algorithms and Applications, 7(3), pp.1-14. doi: 10.1142/S1793830915500299
[10] Huffman, W.C., Pless, V., 2003. Fundamentals of Error-Correcting Codes, Cambridge University
Press Cambridge.
[11] Kanwar, P., Lopez-Permouth, S.R, 1997. Cyclic codes over the integers modulo p
m. Finite Fields Appl. 3(4), pp.334–352. doi: 10.1006/ffta.1997.0189.
[12] Pless,V., Qian, Z., 1996. Cyclic codes and quadratic residue codes over Z4. IEEE Trans. Inform.
Theory, 42(5), pp.1594–1600. doi: 10.1109/18.532906.
[13] Taeri, B., 2009. Quadratic residue codes over Z9. J. Korean Math Soc, 46, pp.13-30. doi:
10.4134/JKMS.2009.46.1.013