[1] Daniel Cebrián-Lacasa, Pedro Parra-Rivas, Daniel Ruiz-Reyn and Lendert Gelens, Six decades of
the FitzHugh-Nagumo model: A guide through its spatio-temporal dynamics and influence across disciplines, arXiv, (2024).
[2] F. Dumortier, J. Llibre and J.C. Artés, Qualitative theory of planar differential systems, Springer, New York, 2006.
[3] W. Gao and J. Wang, Existence of wavefronts and impulses to FitzHugh–Nagumo equations, 2004. Nonlinear Analysis 57 pp. 667-676, doi: 10.1016/j.na.2004.03.009.
[4] Adelina Georgescu, Carmen Rocşoreanu and Nicolaie Giurgiţeanu, 2003. Global Bifurcations in
FitzHugh-Nagumo Model, Trends in Mathematics: Bifurcations, Symmetry and Patterns, pp. 197-202, https://api.semanticscholar.org/CorpusID:116602666.
[5] R. Fitzhugh, 1961. Impulses and physiological states in theoretical models and propagation in nerve membrane, Biophys. J., 1, (445), doi: 10.1016/s0006-3495(61)86902-6.
[6] M. F. Lima and J. Llibre, 2011. Global dynamics of the Rössler system with conserved quantities, Journal of Physics A: Mathematical and Theoretica , 44(36), 365201, doi: 10.1088/1751-
8113/44/36/365201.
[7] J. Llibre and Claudia Valls, 2023. Global centers of the generalized polynomial Liénard differential systems, Journal of Differential Equations, 330, pp. 66-80, doi: 10.1016/j.jde.2022.05.013.
[8] J. Llibre and Claudia Valls, 2023. Global phase portraits of the generalized van der Pol systems, Bull. Sci. Math., 182, 103213, doi: 10.1016/j.bulsci.2022.103213.
[9] Jaume Llibre and Arefeh Nabavi, 2022. Phase portraits of the Selkov model in the Poincaré disc, Discrete and Continuous Dynamical Systems - B, 27, pp. 7607-7623, doi: 10.3934/dcdsb.2022056.
[10] J. Nagumo, S. Arimoto and S. Yoshizawa, 1963. An active pulse transmission line simulating nerve axon, Proceedings of the IRE, 50, pp. 2061-2070, doi: 10.1109/JRPROC.1962.288235.
[11] C. Rocsoreanu, N. Giurgiteanu and A. Georgescu, 2000. Degenerated Hopf bifurcation in the
Fitzhugh-Nagumo system. 2. Bautin bifurcation, Revue Dánalyse Numérique et de Théorie de Lápproximation, 29(1), pp. 97109, doi: 10.33993/jnaat291-659.
[12] Claudia Valls, 2019. On the global dynamics of the Newell-Whitehead system, Journal of Nonlinear Mathematical Physics, 26(4), pp. 569-578, doi: 10.1080/14029251.2019.1640466.