[1] Diamond, P. and Korner, R. (1997). Extended fuzzy linear models and least squares estimates. Computers and Mathematics with Applications, 33, 15-32.
[2] Mohammadi, J. and Taheri, S. M. (2004). Pedomodels ffitting with fuzzy least squares regression. Iranian Journal of Fuzzy Systems, 1, 45-62.
[3] Lee, W. J., Jung, H. Y., Yoon, O. J. H. and Choi, S. H. (2014). The statistical inferences of fuzzy regression based on bootstrap techniques. Soft Computing, 19, 883-890.
[4] Kao, C. and Chyu, C. L. (2003). Least-squares estimates in fuzzy regression analysis. European Journal of Operational Research, 148, 426-435.
[5] Choi, S. H. and Buckley, J. J. (2008). Fuzzy regression using least absolute deviation estimators. Soft Computing, 12, 257-263.
[6] Ferraro, M. B. and Coppi, R., Gonazlez-Rodriguez, G. and Colubi, A. (2010). A linear regression model for imprecise response. International Journal of Approximate Reasoning, 51, 759-770.
[7] Chachi, J. and Taheri, S. M. (2013). A least-absolutes regression Model for imprecise response based on the generalized hausdorff-metric. Journal of Uncertain Systems, 7, 265-276.
[8] Lee, W. J., Jung, H. Y., Yoon, O. J. H. and Choi, S. H. (2014). The statistical inferences of fuzzy regression based on bootstrap techniques. Soft Computing, 19, 883-890.
[9] Zadeh, L. A. (1956). Fuzzy sets. Information and Control, 8, 338-353.
[10] Stefanini, L. (2010). A generalization of hukuhara difference for interval and fuzzy arithmetic. Fuzzy Sets and Systems, 161, 1564-1576.
[11] Heilpern, S. (1997). Representation and application of fuzzy numbers, Fuzzy sets and Systems, 91, 259-268.
[13] Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. Society of Industrial and Applied Mathematics CBMS-NSF Monographs, Philadelphia. ISBN 0898711797.