Best proximity point of weak contraction on the Riemannian Manifolds

نوع مقاله : مقاله پژوهشی

نویسنده

Department of Mathematics, Payame Noor University, PO BOX 19395-4697, Tehran, Iran.

10.22055/jamm.2025.47659.2302

چکیده

This study aims to define $\perp$-proximally increasing mappings and compute some best proximity point results regarding this mapping in the framework of new spaces on the Riemannian manifolds. The new spaces are called strongly orthogonal Riemannian metric spaces. This study aims to define $\perp$-proximally increasing mappings and compute some best proximity point results regarding this mapping in the framework of new spaces on the Riemannian manifolds. The new spaces are called strongly orthogonal Riemannian metric spaces.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Best proximity point of weak contraction on the Riemannian Manifolds

نویسنده [English]

  • Mehdi Jafari
Department of Mathematics, Payame Noor University, PO BOX 19395-4697, Tehran, Iran.
چکیده [English]

This study aims to define $\perp$-proximally increasing mappings and compute some best proximity point results regarding this mapping in the framework of new spaces on the Riemannian manifolds. The new spaces are called strongly orthogonal Riemannian metric spaces. This study aims to define $\perp$-proximally increasing mappings and compute some best proximity point results regarding this mapping in the framework of new spaces on the Riemannian manifolds. The new spaces are called strongly orthogonal Riemannian metric spaces.

کلیدواژه‌ها [English]

  • Riemannian Manifolds
  • Weak Contraction
  • Best Proximity Point
[1] Ampadu, C. B., 2018. Best proximity point theorems for non-self proximal Reich type contractions in complete metric spaces, Fixed Point Theory. 19 (2), pp. 449-452. doi: 10.24193/fpt-ro.2018.2.35
[2] Baghani, H., Eshaghi Gordji , M. and Ramezani, M., 2016. Orthogonal sets: their relation to the
axiom of choice and a generalized fixed point theorem, J. Fixed point Theory Appl. 18 (3), pp.
465-477. doi:10.1007/s11784-016-0297-9
[3] Choudhury, B. S., Metiya, N., Postolache M. and Konar, P., 2015. A discussion on best proximity
point and coupled best proximity point in partially ordered metric spaces, Fixed Point Theory Appl.,170, doi:10.1186/s13663-015-0423-1
[4] Eshaghi Gordji, M. and Habibi, M., 2017. Fixed point theory in generalized orthogonal metric space, Journal of Linear and Topological Algebra, 6 (3), pp. 251-260. doi:20.1001.1.22520201.2017.06.03.7.7
[5] Eshaghi Gordji, M. and Habibi, M., 2019. Orthogonal sets; orthogonal contractions, Asian-European J. Math. 12 (1), pp. 1-10. doi: 10.1142/S1793557119500347
[6] Eshaghi Gordji, M., Ramezani, M., De La Sen M. and Cho, Y. J., 2017. On orthogonal sets and
Banach fixed point theore, Fixed Point Theory. 18 (2), pp. 569-578. doi:10.24193/fpt-ro.2017.2.45
[7] Fan, K., 1969. Extension of two fixed point theorems of F. E. Browder, Math. Z. 112, pp. 234-240. doi:10.1007/BF01110225
[8] Kim, W. K., Kum, S. and Lee K. H., 2008. On general best proximity pairs and equilibrium pairs in free abstract economies, Nonlinear Anal. TMA., 68, pp. 2216-2227. doi:10.1016/j.na.2007.01.057
[9] Kim, W. K. and Lee, K. H., 2006. Existence of best proximity pairs and equilibrium pairs, J. Math.
Anal. Appl. 316, pp. 433-446. doi: 10.1016/j.jmaa.2005.04.053
[10] Kirk, W. A., Riech, S. and Veeramaini P., 2003. Proximinal retracts and best proximity pair theorem, Numer. Funct. Anal. Optim. 24, pp. 851-862. doi: 10.1081/NFA-120026380
[11] Kosti´c, A., Rakoˇcevi´c, V. and Radenovi´c S., 2019. Best proximity points involving simulation functions with w0-distance, RACSAM., 113 (2), pp. 715-727. doi: 10.1007/s13398-018-0512-1
[12] Lee, J. M., 2012. Introduction to Smooth Manifolds, Springer-Verlag, New York.
[13] Pitea, A., 2019. Best proximity results on dualistic partial metric spaces, Symmetry-Basel, 11 (3), Art. No. 306. doi: 10.3390/sym11030306
[14] Pitea, A. and Stanciu, M., 2023. Best proximity for proximal operators on b-metric spaces, Turk. J.Math., 47 (7), pp. 1873-1886. doi:10.55730/1300-0098.3469
[15] Pragadeeswarar, V. and Marudai, M., 2013. Best proximity points: approximation and optimization in partially ordered metric spaces, optim Lett. 7, pp. 1883-1892. doi:10.1007/s11590-012-0529-x
[16] Ramezani, M., 2015. Orthogonal metric space and convex contractions, Int. J. Nonlinear Anal. Appl.6 (2), pp. 127-132. doi: 10.22075/ijnaa.2015.261
[17] Ramezani, M. and Baghani H., 2017. Contractive gauge functions in strongly orthogonal metric spaces , Int. J. Nonlinear Anal. Appl. 8 (2), pp. 23-28. doi: 10.22075/ijnaa.2016.452
[18] Sadiq Basha, S., 2011. Discrete optimization in partially ordered sets, J. Glob. Optim. 54, pp. 511-517. doi:10.1007/s10898-011-9774-2
[19] Sankar Raj, V., 2011. A Best proximity point theorem for weakly contractive non-self-mappings, Nonlinear Anal. TMA. 74 (14), pp. 4804-4808. doi: 10.1016/j.na.2011.04.052
[20] Sankar Raj, V., 2013. Best proximity point theorems for non-self-mappings, Fixed point theory. 14(2), pp. 447-454.
[21] Senapati, T., Dey, L.K., Damjanovi´c, B. and Chanda A., 2018. New fixed point results in orthogonal Riemannian metric spaces with an application, Kragujevac. J. Math. 42 (4), pp. 505-516.doi:10.5937/KgJMath1804505S.
[22] Shatanawi, W. and Pitea, A., 2015. Best proximity point and best proximity coupled point in a
complete metric space with (P)-property, Filomat, 29, pp. 63-74. doi: 10.2298/FIL1501063S
[23] Sultana, A. and Vetrivel, V., 2014. On the existence of best proximity points for generalized contractions, Appl. Gen. Topol., 15 (1), pp. 55-63. https://doi.org/10.4995/agt.2014.2221