[1] Wendland, H., 2005. Scattered Data Approximation, Cambridge University Press.
[2] Madych, W.R and Nelson, S.A., 1990. Multivariate interpolation and conditionally positive definite functions II, Math. Comput. 54 (189), pp.211-230. doi:10.1090/S0025-5718-1990-0993931-7
[3] Madych, W.R. and Nelson, S.A., 1992. Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation, J. Approx. Theory, 70, pp.94-114. doi:10.1016/0021-9045(92)90058-V
[4] Kauthen, P.J., 1989. Continuous time collocation methods for Volterra-Fredholm integral equations, Numer. Math. 56, pp.409-424. doi:10.1007/BF01396646
[5] Brunner, H. and Van der Houwen, P.J., 1986. The numerical solution of Volterra equations, CWI
Monographs, vol. 3, North-Holland, Amsterdam.
[6] Maleknejad, K. and Hadizadeh, M., 1999. A new computational method for Volterra-Fredholm integral equations, Comput. Math. Appl. 37, pp.1-8. doi:10.1016/S0898-1221(99)00107-8
[7] Wazwaz, A.M., 2002. A reliable treatment for mixed Volterra-Fredholm integral equations, Appl. Math. Comput. 127, pp.405-414. doi: 10.1016/S0096-3003(01)00020-0
[8] Banifatemi, E., Razzaghi, M. and Yousefi, S., 2007 Two-dimensional Legendre Wavelets
Method for the mixed Volterra-Fredholm integral equations, J. Vibr. Control. 13, pp.1667-1675.
doi:10.1177/1077546307078751
[9] Hardy, R.L., 1971. Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res. 76, pp.1905-1915. doi:10.1029/JB076i008p01905
[10] Han, G. and Zhang, L., 1994. Asymptotic expansion for the trapezoidal Nystrom method of
linear Volterra–Fredholm equations, J. Comput. Appl. Math. 51, pp.339-348. doi:10.1016/0377-
0427(92)00013-Y
[11] Laeli Dastjerdi, H., Maalek Ghaini, F. M. and Hadizadeh, M., 2013. A meshless approximate
solution of mixed Volterra-Fredholm integral equations, Int. J. Comput. Math. 90, pp.527-538.
doi:10.1080/00207160.2012.720677
[12] Kansa, E.J., 1990. Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics. I. Surface approximations and partial derivative estimates, Comput. Math. Appl. 19 (8-9), pp.127-145. doi:10.1016/0898-1221(90)90270-T
[13] Kansa, E.J., 1990. Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics. II. Solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl. 19 (8-9), pp.147-161. doi:10.1016/0898-1221(90)90271-K
[14] Atkinson, K. E. and Potra, F. A., 1987. Projection and iterated projection methods for nonlinear
integral equations, SIAM J. Numer. Anal. 24, pp.1352-1373. doi:10.1137/0724087
[15] Atkinson, K. and Flores, J., 1993. The discrete collocation method for nonlinear integral equations, IMA J. Numer. Anal. 13, pp.195-213. doi:10.1093/imanum/13.2.195
[16] Fasshauer, G.E., 2006. Meshfree methods. In: Rieth, M., Schommers, W. (eds.) Handbook of Theoretical and Computational Nanotechnology, American Scientific Publishers, 27, pp.33-97.
[17] Erfanian, M. and Zeidabadi, H., 2019. Solving two-dimensional nonlinear mixed Volterra Fredholm integral equations by using rationalized Haar functions in the complex plane, J. Math. Model. 7,pp.399-416. doi:10.22124/JMM.2019.13987.1300
[18] Katani, R. and Mckee, S., 2020. A hybrid Legendre block-pulse method for mixed Volterra-Fredholm integral equations, J. Comput. Appl. Math. 376, 112867. doi:10.1016/j.cam.2020.112867
[19] Paul, S.K., Mishra, L.N and Mishra, V.N., 2023. Analysis of mixed type nonlinear Volterra–Fredholm integral equations involving the Erdélyi–Kober fractional operator, J. King Saud Univ. Sci. 35, 102949.doi:10.1016/j.jksus.2023.102949