روش هم محلی وهم محلی تکراری برای حل عددی معادلات انتگرال ترکیبی ولترا فردهلم دو بعدی روی نواحی غیر مستطیلی و بررسی آنالیز خطای آن

نوع مقاله : مقاله پژوهشی

نویسنده

گروه ریاضی ، دانشگاه فرهنگیان، تهران، ایران

10.22055/jamm.2025.47797.2305

چکیده

دراین مقاله با استفاده از روش بدون شبکه و روش هم مکانی و هم مکانی تکراری به حل عددی معادلات انتگرال ترکیبی ولترا فردهلم دو بعدی روی نواحی غیر مستطیلی می پردازیم. این روش یک روش بدون شبکه است و از نقاط پراکنده برای تقریب جواب معادله استفاده می شود. پیاده سازی این روش ساده و محاسبات آن به آسانی انجام می گیرد. همگرایی روش بررسی می شود و نتایج عددی نشان می دهد که این روش، با آنالیز تحلیل آن مطابقت دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Collocation and iterated collocation method for the numerical solution of mixed two-dimensional Volterra-Fordhelm integral integral equations on non rectangular region with its error analysis

نویسنده [English]

  • Hojatollah Laeli Dastjerdi
Department of mathemtics Farhangian University, Tehran, Iran
چکیده [English]

In this paper, using the meshless method based on collocation and iterated collocation method, we investigate the numerical solution of the two-dimensional Volterra-Fordhelm integral integral equations on non-rectangular regions. This method is a meshfree method and scattered points are used to approximate the solution of the equation. The implementation of this method is simple and its calculations are done easily. The convergence of the method is checked and the numerical results show that this method is consistent with its analysis.

کلیدواژه‌ها [English]

  • Radial Basis functions
  • Mixed Volterra-Fredholm integral equations
  • Convergence
  • Collocation method
[1] Wendland, H., 2005. Scattered Data Approximation, Cambridge University Press.
[2] Madych, W.R and Nelson, S.A., 1990. Multivariate interpolation and conditionally positive definite functions II, Math. Comput. 54 (189), pp.211-230. doi:10.1090/S0025-5718-1990-0993931-7
[3] Madych, W.R. and Nelson, S.A., 1992. Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation, J. Approx. Theory, 70, pp.94-114. doi:10.1016/0021-9045(92)90058-V
[4] Kauthen, P.J., 1989. Continuous time collocation methods for Volterra-Fredholm integral equations, Numer. Math. 56, pp.409-424. doi:10.1007/BF01396646
[5] Brunner, H. and Van der Houwen, P.J., 1986. The numerical solution of Volterra equations, CWI
Monographs, vol. 3, North-Holland, Amsterdam.
[6] Maleknejad, K. and Hadizadeh, M., 1999. A new computational method for Volterra-Fredholm integral equations, Comput. Math. Appl. 37, pp.1-8. doi:10.1016/S0898-1221(99)00107-8
[7] Wazwaz, A.M., 2002. A reliable treatment for mixed Volterra-Fredholm integral equations, Appl. Math. Comput. 127, pp.405-414. doi: 10.1016/S0096-3003(01)00020-0
[8] Banifatemi, E., Razzaghi, M. and Yousefi, S., 2007 Two-dimensional Legendre Wavelets
Method for the mixed Volterra-Fredholm integral equations, J. Vibr. Control. 13, pp.1667-1675.
doi:10.1177/1077546307078751
[9] Hardy, R.L., 1971. Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res. 76, pp.1905-1915. doi:10.1029/JB076i008p01905
[10] Han, G. and Zhang, L., 1994. Asymptotic expansion for the trapezoidal Nystrom method of
linear Volterra–Fredholm equations, J. Comput. Appl. Math. 51, pp.339-348. doi:10.1016/0377-
0427(92)00013-Y
[11] Laeli Dastjerdi, H., Maalek Ghaini, F. M. and Hadizadeh, M., 2013. A meshless approximate
solution of mixed Volterra-Fredholm integral equations, Int. J. Comput. Math. 90, pp.527-538.
doi:10.1080/00207160.2012.720677
[12] Kansa, E.J., 1990. Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics. I. Surface approximations and partial derivative estimates, Comput. Math. Appl. 19 (8-9), pp.127-145. doi:10.1016/0898-1221(90)90270-T
[13] Kansa, E.J., 1990. Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics. II. Solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl. 19 (8-9), pp.147-161. doi:10.1016/0898-1221(90)90271-K
[14] Atkinson, K. E. and Potra, F. A., 1987. Projection and iterated projection methods for nonlinear
integral equations, SIAM J. Numer. Anal. 24, pp.1352-1373. doi:10.1137/0724087
[15] Atkinson, K. and Flores, J., 1993. The discrete collocation method for nonlinear integral equations, IMA J. Numer. Anal. 13, pp.195-213. doi:10.1093/imanum/13.2.195
[16] Fasshauer, G.E., 2006. Meshfree methods. In: Rieth, M., Schommers, W. (eds.) Handbook of Theoretical and Computational Nanotechnology, American Scientific Publishers, 27, pp.33-97.
[17] Erfanian, M. and Zeidabadi, H., 2019. Solving two-dimensional nonlinear mixed Volterra Fredholm integral equations by using rationalized Haar functions in the complex plane, J. Math. Model. 7,pp.399-416. doi:10.22124/JMM.2019.13987.1300
[18] Katani, R. and Mckee, S., 2020. A hybrid Legendre block-pulse method for mixed Volterra-Fredholm integral equations, J. Comput. Appl. Math. 376, 112867. doi:10.1016/j.cam.2020.112867
[19] Paul, S.K., Mishra, L.N and Mishra, V.N., 2023. Analysis of mixed type nonlinear Volterra–Fredholm integral equations involving the Erdélyi–Kober fractional operator, J. King Saud Univ. Sci. 35, 102949.doi:10.1016/j.jksus.2023.102949